Support vector machines for predicting apoptosis proteins types.
نویسندگان
چکیده
Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death, and their function is related to their types. According to the classification scheme by Zhou and Doctor (2003), the apoptosis proteins are categorized into the following four types: (1) cytoplasmic protein; (2) plasma membrane-bound protein; (3) mitochondrial inner and outer proteins; (4) other proteins. A powerful learning machine, the Support Vector Machine, is applied for predicting the type of a given apoptosis protein by incorporating the sqrt-amino acid composition effect. High success rates were obtained by the re-substitute test (98/98 = 100 %) and the jackknife test (89/98 = 90.8%).
منابع مشابه
Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملEvaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)
In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biotheoretica
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2005